Penerapan Transfer Learning Dengan Inception-V3 Dan Efficientnet-B4 Pada Studi Kasus Klasifikasi Penyakit Pada Daun Singkong
DOI:
https://doi.org/10.59188/jcs.v3i12.2906Keywords:
cassava diseases, convolutional neural networks, computer vision, image classification, densenetAbstract
Cassava is a crop that has high demand in Indonesia, marked by increasing production levels over time. In addition to quantity, crop quality must be maintained, one of which is by paying attention to disease symptoms. Disease symptoms that appear on cassava leaves can be detected by visual inspection. However, more knowledge is needed to distinguish the symptoms of one disease from another. One solution to this problem is the use of convolutional neural networks (CNN) for disease classification. The author uses a CNN model for this problem. The performance assessment parameters of the CNN model used are accuracy, precision, recall, and F1-score. This study will use two architectures in transfer learning, namely EfficientNet-B4 and Inception-V3. Both of these architectures are still rarely used in related case studies. The purpose of increasing the number of parameters is to find the optimal configuration of the optimizer and learning rate that can maximize model performance. By increasing the number of parameters and utilizing two architectures in transfer learning, it is hoped that the model's ability to handle the complexity of the problem of classifying images of cassava leaves with disease can be improved. The focus of this study will also be focused on the application of the EfficientNet-B4 and Inception-V3 architectures with a hyperparameter tuning scheme to improve model performance. Therefore, this research is expected to provide a superior contribution in the development of CNN for disease classification in cassava leaves, with better and more accurate performance.
References
Abel, S., Pranidana, A. M., Qasos, L., & Ula, M. (2024). Perbandingan Akurasi Metode Convolutional Neural Network (CNN) dan Sobel untuk Klasifikasi Buah Rambutan melalui Pengolahan Citra. Prosiding Seminar Nasional Teknologi Dan Teknik Informatika (SENASTIKA), 1(1).
Allaam, M. R. R., & Wibowo, A. T. (2021). Klasifikasi Genus Tanaman Anggrek Menggunakan Metode Convolutional Neural Network (CNN). EProceedings of Engineering, 8(2).
Dewiani, D., Hutabarat, M. Y., Marwan, M., Miranda, D., Solin, S. R. B., Muzamil, T., Zuriansyah, Z., Fuqara, F. A., Akmal, A. K., & Pamungkas, I. (2024). Sosialisasi Nilai Tambah Singkong di Desa Keras. Teknodimas: Teknologi Pengabdian Masyarakat, 2(1), 70–76.
Farhan, M. (2024). Analisis perbandingan pengaruh variasi data augmentasi terhadap kinerja mobilenetv2 dalam klasifikasi penyakit daun teh. Fakultas Sains dan Teknologi UIN Syarif HIdayatullah Jakarta.
Gunawan, I. P., Gunawan, A. N. S., Ratnadewi, R., Safrizal, S., Sembiring, A. A., Husain, N. P., & Kuntarto, G. P. (2023). Pemrosesan citra. PT Mafy Media Literasi Indonesia.
Hartati, S. (2021). Kecerdasan Buatan Berbasis Pengetahuan. Ugm Press.
Ibrahim, M. B., Sari, F. P., Kharisma, L. P. I., Kertati, I., Artawan, P., Sudipa, I. G. I., Simanihuruk, P., Rusmayadi, G., Nursanty, E., & Lolang, E. (2023). Metode Penelitian Berbagai Bidang Keilmuan (Panduan & Referensi). PT. Sonpedia Publishing Indonesia.
Masita, F. (2023). Pengaruh Kombinasi Populasi Dari Tumpangsari Singkong-Kedelai Pada Hasil Dan Vigor Awal Benih Kedelai (Glycine max L. Merrill).
Predianto, E., & Sutomo, B. (2024). Klasifikasi Jenis Bunga Dengan Algoritma Convolutional Neural Network (CNN) Menggunakan Metode Region-Based Convolutional Neural Network (R-CNN). Cyberspace: Jurnal Pendidikan Teknologi Informasi, 8(2), 1–15.
Putri, N. A., Siregar, M., Perwitasari, I. D., & Mayasari, S. (2024). Aplikasi Diagnosa Penyakit Dan Hama Pohon Aren (Arenga Pinnata) Dengan Metode Certainty Factor. Serasi Media Teknologi.
Ramadhan, M. A. (2020). Penerapan Farm From Home Melalui Kegiatan Vertikultur Sebagai Solusi Antisipatif Terhadap Krisis Ketahanan Pangan Akibat Pandemi Covid-19. Minda Mahasiswa Indonesia: Antisipasi Resesi Dan Krisis Pangan Akibat Pandemi, 55.
Salim, E. (2024). Mengolah Singkong Menjadi Tepung Mocaf, Bisnis Produk Alternatif Pengganti Terigu. Penerbit Andi.
Santoso, I., & Madiistriyatno, H. (2021). Metodologi penelitian kuantitatif. Indigo Media.
Saparinto, C., & Susiana, R. (2024). Grow Your Own Kitchen Spice–Panduan Praktis Menanam 28 Tanaman Bumbu Dapur Populer di Pekarangan. Penerbit Andi.
Yusuf, M., Kurniawan, D., & Agustin, T. (2024). Klasifikasi Penyakit Tanaman Jagung dengan Kecerdasan Buatan Berbasis CNN. Prosiding Seminar Nasional Amikom Surakarta, 2, 355–368.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tri Anton
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA). that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.